MTH 301 Final Exam Solutions

1. For each of the following finite groups, describe the Class Equation in the form

$$
|G|=|Z(G)|+\sum_{i=1}^{r}\left[G: C_{G}\left(g_{i}\right)\right]
$$

where the g_{i} represent the distinct conjugacy classes of G not contained in $Z(G)$.
(a) $G=D_{8}$
(b) $G=Q_{8}$

Solution. (a) First, we determine the distinct conjugacy classes of

$$
D_{8}=\left\{1, r, r^{2}, r^{3}, s, s r, s r^{2}, s r^{3}\right\} .
$$

Since $Z\left(D_{8}\right)=\left\{1, r^{2}\right\}$, we have $\mathscr{C}_{1}=\{1\}$ and $\mathscr{C}_{r^{2}}=\left\{r^{2}\right\}$. Moreover, as $s r s^{-1}=r^{3}, r s r^{-1}=s r^{2}$, and $s(s r) s^{-1}=s r^{3}$, we have $\mathscr{C}_{r}=\mathscr{C}_{r^{3}}, \mathscr{C}_{s}=$ $\mathscr{C}_{s r^{2}}$, and $\mathscr{C}_{s r}=\mathscr{C}_{s r^{3}}$. Furthermore, since $|\langle r\rangle|=4$ and $\langle r\rangle \leq C_{G}(r)<$ G, we have $\left|C_{G}(r)\right|=4$, which would imply that $\left|\mathscr{C}_{r}\right|=|G| /\left|C_{G}(r)\right|=2$ (see 4.3.3 (iv) of the Lesson Plan). Thus, we have $\mathscr{C}_{r}=\mathscr{C}_{r^{3}}=\left\{r, r^{3}\right\}$. By a similar reasoning, we can infer that $\left|C_{G}(s)\right|=\left|C_{G}(s r)\right|=4$, and so it follows that $\mathscr{C}_{s}=\mathscr{C}_{s r^{2}}=\left\{s, s r^{2}\right\}$, and $\mathscr{C}_{s r}=\mathscr{C}_{s r^{3}}=\left\{s, s r^{2}\right\}$. Therefore, the distinct conjugacy classes of D_{8} are:

$$
\left\{\{1\},\left\{r^{2}\right\},\left\{r, r^{3}\right\},\left\{s, s r^{2}\right\},\left\{s r, s r^{3}\right\}\right\} .
$$

Finally, the Class Equation in D_{8} takes the form

$$
8=\left|\left\{1, r^{2}\right\}\right|+\frac{8}{\left|C_{G}(r)\right|}+\frac{8}{\left|C_{G}(s)\right|}+\frac{8}{\left|C_{G}(s r)\right|}=2+2+2+2 .
$$

(b) We begin by determining the conjugacy classes of

$$
Q_{8}=\{ \pm 1, \pm i, \pm j, \pm k\}
$$

We know that $Z\left(Q_{8}\right)=\{ \pm 1\}$ and $\mathscr{C}_{1}=\{1\}$. Moreover, for any $x \in$ $\{ \pm i, \pm j, \pm k\}$, since $|\langle x\rangle|=4$ and $\langle x\rangle \leq C_{G}(x)<G$, we have $\left|\mathscr{C}_{x}\right|=2$. Thus, the distinct conjugacy classes of Q_{8} are:

$$
\{\{1\},\{-1\},\{ \pm i\},\{ \pm j\},\{ \pm k\}\} .
$$

Therefore, the Class Equation in Q_{8} takes the form

$$
8=|\{ \pm 1\}|+\frac{8}{\left|C_{G}(i)\right|}+\frac{8}{\left|C_{G}(j)\right|}+\frac{8}{\left|C_{G}(k)\right|}=2+2+2+2 .
$$

2. Besides D_{16}, describe two other non-abelian groups of order 16 that arise as the semi-direct product of two groups.
Solution. Since $\operatorname{gcd}(4, \phi(4))>2$, there exists exists a non-trivial homomorphism $\psi: \mathbb{Z}_{4} \rightarrow \operatorname{Aut}\left(\mathbb{Z}_{4}\right) \cong \mathbb{Z}_{2}=\{[1],[-1]\}$, which is determined by $\psi([1])=[-1]$. Thus, there exists a non-trivial semi-direct product $\mathbb{Z}_{4} \ltimes_{-1} \mathbb{Z}_{4}$ of order 16. To see that this group is not isomorphic to D_{16}, we first note that $\mathbb{Z}_{4} \ltimes_{-1} \mathbb{Z}_{4}$ has a normal cyclic subgroup of order 4 whose quotient is also isomorphic to \mathbb{Z}_{4}. However, the only cyclic subgroup of D_{16} is $\left\{1, r^{2}, r^{4}, r^{6}\right\}$, whose quotient isomorphic to the Klein 4-group (Verify!).
Since $\operatorname{Aut}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)=\mathrm{GL}\left(2, \mathbb{Z}_{2}\right) \cong S_{3}$ has no element of order 4 , a nontrivial homomorphism $\psi: \mathbb{Z}_{4} \rightarrow \operatorname{Aut}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)$ must satisfy $|\psi([1])|=2$. Since S_{3} has three elements of order 2, there are three possibilities of such a homomorphism. Thus, there exists three non-trivial semi-direct products of the form $\mathbb{Z}_{4} \ltimes_{\psi}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)$ of order 16 (which are isomorphic, since the elements of order 2 in S_{3} are conjugate). In particular, we may choose the semi-direct determined by $\psi([1])=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$. Furthermore, $\mathbb{Z}_{4} \ltimes_{\psi}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)$ has a normal subgroup of order 4 that is isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$. As D_{16} as no such subgroups (Verify!), $\mathbb{Z}_{4} \ltimes\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right) \not \neq D_{16}$.
3. Let p and q be distinct primes such that $p>q$ and $q \nmid p^{2}-1$. Then show that a group of order $p^{2} q$ is abelian.
Solution. Let G be a group with $|G|=p^{2} q$. Then by the Sylow's theorems, G has a Sylow p-subgroup P of order p^{2} and a Sylow q-subgroup Q of order q. Consequently, both P and Q are abelian. Moreover since $n_{p} \equiv 1(\bmod p)$ and $n_{p} \mid q$, we have that $n_{p}=1$, which implies that $P \triangleleft G$. Furthermore, as $n_{q} \equiv 1(\bmod q), n_{q} \mid p^{2}$, and $q \nmid p^{2}-1$, it follows that $n_{q}=1$, and hence $Q \triangleleft G$. Finally, since $P \cap Q=\{1\}$, we have $G=P Q$. Finally, by Midterm Question 1, it follows that $G=P Q \cong P \times Q$, which shows that G is abelian.
4. Show that a group of order 56 is non-simple.

Solution. Since $56=2^{3} \cdot 7$, by the Sylow's theorems, a group G of order 56 has a Sylow 2-subgroup H of order 8 and a Sylow 7 -subgroup K of order 7 . Furthermore, we have $n_{7} \equiv 1(\bmod 7)$ and $n_{7} \mid 8$, which shows that $n_{7} \in\{1,8\}$. If $n_{7}=1$, then clearly $K \triangleleft G$, which shows that G is non-simple.

Suppose that $n_{7}=8$. Then G has eight distinct subgroups of order 7 (one of which is K) that intersect pairwise trivially. Consequently, G must have 48 distinct elements of order 7 . Since as $|G|=56$, this shows that H is a unique Sylow 2-subgroup of G, and so we have $H \triangleleft G$. Therefore, G is non-simple.
5. (a) Show that there exists a subgroup of S_{8} isomorphic to Q_{8}.
(b) For $n \leq 7$, show that there exists no subgroup of S_{n} that is isomorphic to Q_{8}.
Solution. (a) We know from Lesson Plan 4.3 .2 (i) that the action $G \curvearrowright G$ by left-multiplication is faithful, and so it affords a left-regular representation : $\psi: G \rightarrow S(G)$, which is injective. In our case, since $G=Q_{8}$, we have $S(G) \cong S_{\left|Q_{8}\right|}=S_{8}$ and $Q_{8} \cong \psi\left(Q_{8}\right)<S_{8}$, from which the assertion follows.
(b) For $n \leq 7$, let us assume that S_{n} does contain a subgroup $H \cong Q_{8}$. Since S_{n} is the group of permutations of the set $\{1,2, \ldots, n\}$, there is a natural action $S_{n} \times\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}:(\sigma, i) \mapsto \sigma(i)$ which affords a permutation representation $S_{n} \rightarrow S(\{1,2, \ldots, n\})$ that is an isomorphism (see Assignment II: Practice Assignment 1(b)). Since $H<S_{n}$, this action restricts to faithful action of $H \curvearrowright\{1,2, \ldots, n\}$. Applying the Orbit-Stabilizer theorem to this action, we get $\left[H: H_{i}\right]=$ $\left|\mathcal{O}_{i}\right|$, for each $i \in\{1,2, \ldots, n\}$. Since $\left|\mathcal{O}_{i}\right| \leq n<8$, it follows that H_{i} is non-trivial. Furthermore, we have $\operatorname{ker}(H \curvearrowright\{1,2, \ldots, n\})=$ $\cap_{i \in\{1,2, \ldots, n\}} H_{i}$. Since the intersection of all non-trivial subgroups of Q_{8} is $\{ \pm 1\}$, which is non-trivial, it follows that $\operatorname{ker}(H \curvearrowright\{1,2, \ldots, n\})$ is non-trivial. Consequently, $H \curvearrowright\{1,2, \ldots, n\}$ is not faithful, which is a contradiction.

